
Fault Injection with FAIL*
DSN ’18 Hands-On Tutorial

Horst Schirmeier and Olaf Spinczyk
Department of Computer Science 12

Technische Universität Dortmund, Germany
e-mail: {horst.schirmeier, olaf.spinczyk}@tu-dortmund.de

Fault injection (FI) has been a standard technique for test,
measurement, and comparison of fault-tolerance implementa-
tions for decades. By using, for example, a virtual machine emu-
lating faulty hardware, the developer of a software-implemented
fault tolerance method can test the implementation, and measure
its effectiveness in an adverse environment. FI can also be
used to emulate other kinds of faults, such as communication
problems, or even programming errors (bugs).

In this hands-on tutorial, we will focus on software-
implemented hardware fault tolerance (SIHFT), and introduce
the participants to simulation-based hardware FI for analysis,
test and measurement. The open-source FI framework FAIL*
will be used to analyze a small example program. Working in
groups or autonomously, the participants will – choosing from
given suggestions, or inventing their own SIHFT technique –
improve the benchmark on the source-code level to make it
more resilient against hardware faults. In the grand finale, all
solutions will compete for a small prize and, certainly, fame!

I. MOTIVATION AND GOALS

FI is a frequently used technique in the DSN community to
evaluate the resilience of hardware or software and the effects
of new fault tolerance mechanisms. As FI itself is not their
main focus, many researchers use simplistic old or home grown
tools, which reduces the quality of the results or consumes
more resources than necessary. FAIL* [1] is an open source
tool, which could help to avoid “reinventing the wheel” in many
cases. It has been used by many research groups in several
different use cases successfully. It has been developed during
the last five years, is continuously maintained, and runs on
up-to-date Linux platforms. Its ability to execute FI campaigns
on compute clusters in parallel makes it an ideal tool for larger
experiments or for experiments with full fault-space coverage.

The main goal is to give the participants a first, hands-on
experience with the FAIL* FI tooling. This shall make sure they
have a steep learning curve when using FAIL* for their own
research, for instance, to evaluate novel SIHFT mechanisms.
Each participating team will iteratively use FAIL*:

• An analysis of the target program reveals particularly
“weak” spots, e.g. specific data structures (see Fig. 1) or
program modules that should be protected with SIHFT at
the highest priority.

• The team hardens the program by, e.g., adding redundancy
to weak spots, or improving the program algorithmically.

0 2000 4000 6000 8000 10000 12000
Time (Cycles)

1108000

1110000

1112000

1114000

1116000

1118000

1120000

1122000

1124000

D
a
ta

 M
e
m

o
ry

 (
R

A
M

)
thread

stack

Cyg_RealTim
eClock::rtc

Cyg_Scheduler::scheduler

hal_interrupt_handlers

idle_thread

idle_thread_stack

cyg_libc_m
ain_stack

Fig. 1. Fault-space plot of an FI campaign on an embedded OS kernel,
produced by FAIL* [2].

• Test, measurement and comparison with earlier versions
of the program determines whether the SIHFT implemen-
tation works correctly, and whether it actually improves
fault tolerance in this setting [3].

II. ORGANIZATION

We are planning a compact (3 hours) introductory tutorial:
• It briefly introduces the concepts and pros/cons of SIHFT,
• familiarizes participants with FI concepts, techniques,

tools, and pitfalls, and
• is fun, because simple fault-tolerance mechanisms are

evaluated “hands-on” with FAIL* in an interactive manner.
The target audience are developers and researchers from
industry and academia (of course, including students generally
interested in the presented topics). The tutorial is intended
for beginners in the field of SIHFT and FI. However, some
experience with C/C++ and working on the Linux command-
line is expected.

REFERENCES

[1] H. Schirmeier, M. Hoffmann, C. Dietrich, M. Lenz, D. Lohmann, and
O. Spinczyk, “FAIL*: An open and versatile fault-injection framework
for the assessment of software-implemented hardware fault tolerance,” in
11th Europ. Depend. Comp. Conf. (EDCC ’15). IEEE, Sep. 2015.

[2] C. Borchert, H. Schirmeier, and O. Spinczyk, “Generative software-based
memory error detection and correction for operating system data structures,”
in 43rd IEEE/IFIP Int. Conf. on Dep. Sys. & Netw. (DSN ’13). IEEE,
Jun. 2013.

[3] H. Schirmeier, C. Borchert, and O. Spinczyk, “Avoiding pitfalls in fault-
injection based comparison of program susceptibility to soft errors,” in
45th IEEE/IFIP Int. Conf. on Dep. Sys. & Netw. (DSN ’15). IEEE, 2015.


